You can use the function of dtype() to check the data type of columns for Pandas dataframes. You can either check a single column or all the columns. The following is the sample code.
Check Data Type for All Columns in Pandas
import pandas as pd
car_data = {'Brand': ['Tesla', 'Tesla','Tesla','Ford'],
'Location': ['CA', 'CA','NY','MA'],
'Year':[2019,2018,2020,2019],
'DateTime':[pd.Timestamp('20190310'), pd.Timestamp('20180311'), pd.Timestamp('20200101'), pd.Timestamp('20190324')]}
car_data=pd.DataFrame(data=car_data)
print(car_data)
Brand Location Year DateTime 0 Tesla CA 2019 2019-03-10 1 Tesla CA 2018 2018-03-11 2 Tesla NY 2020 2020-01-01 3 Ford MA 2019 2019-03-24
# Check data types of all columns
car_data.dtypes
Brand object Location object Year int64 dtype: object
Check Data Types of a Specific Column
# Check Data Types of a Specific Column
car_data.Year.dtypes
dtype('int64')
# Check Data Types of a Specific Column
car_data.DateTime.dtypes
dtype('<M8[ns]')
Note that, datetime64[ns] is a general dtype, while <M8[ns] is a specific dtype.
Additional Note
Note that, in Pandas, it uses object to indicate that it is string. The following is the quote from Stackoverflow about this topic. This is the link for the disucssion on Stackoverflow.
Since release 0.11.1 there is an auto-conversion from
dtype=strtodtype=objectwhenever it is seen, so it does not matter what you use, although I would advise avoidingstraltogether and just usedtype=object.