How to Use Pandas Melt() Function
This short tutorial shows you how you can use melt() funtion in Pandas. It is often used when we need to change the format of dataframe to fit into a certain statistical functions.
Example 1 of Using melt()
import pandas as pd
City1= [6,2,3,4,5]
City2= [2,1,3,4,5]
City3= [4,1,2,4,5]
city_data = pd.DataFrame(
{'City1': City1,
'City2': City2,
'City3': City3
})
print(city_data)
City1 City2 City3 0 6 2 4 1 2 1 1 2 3 3 2 3 4 4 4 4 5 5 5
city_data=city_data.melt( var_name="Cities",
value_name="Household_size")
print(city_data)
Cities Household_size 0 City1 6 1 City1 2 2 City1 3 3 City1 4 4 City1 5 5 City2 2 6 City2 1 7 City2 3 8 City2 4 9 City2 5 10 City3 4 11 City3 1 12 City3 2 13 City3 4 14 City3 5
Example 2 of Using melt()
import pandas as pd
City1= [6,2,3,4,5]
City2= [2,1,3,4,5]
City3= [4,1,2,4,5]
Housing_Type=["Apartment","Apartment","House","House","House"]
city_data = pd.DataFrame(
{'Housing_Type':Housing_Type,
'City1': City1,
'City2': City2,
'City3': City3
})
print(city_data)
city_data=city_data.melt(
id_vars=["Housing_Type",],
var_name="Cities",
value_name="Household_size")
print(city_data)
Housing_Type City1 City2 City3 0 Apartment 6 2 4 1 Apartment 2 1 1 2 House 3 3 2 3 House 4 4 4 4 House 5 5 5 Housing_Type Cities Household_size 0 Apartment City1 6 1 Apartment City1 2 2 House City1 3 3 House City1 4 4 House City1 5 5 Apartment City2 2 6 Apartment City2 1 7 House City2 3 8 House City2 4 9 House City2 5 10 Apartment City3 4 11 Apartment City3 1 12 House City3 2 13 House City3 4 14 House City3 5