This tutorial explains what a dataframe is in Python. Further, I will show how to define a dataframe using Pandas with examples. Finally, I will show how to define a dataframe from Pandas.series.
Introduction of Dataframe
Dataframe is two-dimensional, size-mutable, potentially heterogeneous tabular data. For instance, below is a dataframe of Microsoft stock price. (Regarding how to download it, you can refer to here. )
Often, we can construct a dataframe from a dictionary and the following is the example in Python.
import pandas as pd
d = {'Brand': ['Tesla', 'Ford'], 'Count': [3, 4]}
print(type(d))
print(d)
df = pd.DataFrame(data=d)
print(df)
<class 'dict'> {'Brand': ['Tesla', 'Ford'], 'Count': [3, 4]} Brand Count 0 Tesla 3 1 Ford 4
Pandas.Series
d = {'a': 1, 'b': 2, 'c': 3}
ser = pd.Series(data=d, index=['b', 'c', 'a'])
print(ser)
b 2 c 3 a 1
The following code shows how to constructe a DataFrame from a dictionary including series.
import pandas as pd
d = {'col_1': [0, 1, 2, 3], 'col_2': pd.Series([3, 4], index=[0, 3])}
print(pd.DataFrame(data=d,index=[0, 1, 2, 3]))
col_1 col_2 0 0 3.0 1 1 NaN 2 2 NaN 3 3 4.0